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Abstract
Automated amyloid-PET image classification can support clinical assessment and increase diagnostic confidence. Three 
automated approaches using global cut-points derived from Receiver Operating Characteristic (ROC) analysis, machine 
learning (ML) algorithms with regional SUVr values, and deep learning (DL) network with 3D image input were compared 
under various conditions: number of training data, radiotracers, and cohorts. 276  [11C]PiB and 209  [18F]AV45 PET images 
from ADNI database and our local cohort were used. Global mean and maximum SUVr cut-points were derived using ROC 
analysis. 68 ML models were built using regional SUVr values and one DL network was trained with classifications of 
two visual assessments – manufacturer’s recommendations (gray-scale) and with visually guided reference region scaling 
(rainbow-scale). ML-based classification achieved similarly high accuracy as ROC classification, but had better convergence 
between training and unseen data, with a smaller number of training data. Naïve Bayes performed the best overall among 
the 68 ML algorithms. Classification with maximum SUVr cut-points yielded higher accuracy than with mean SUVr cut-
points, particularly for cohorts showing more focal uptake. DL networks can support the classification of definite cases 
accurately but performed poorly for equivocal cases. Rainbow-scale standardized image intensity scaling and improved 
inter-rater agreement. Gray-scale detects focal accumulation better, thus classifying more amyloid-positive scans. All three 
approaches generally achieved higher accuracy when trained with rainbow-scale classification. ML yielded similarly high 
accuracy as ROC, but with better convergence between training and unseen data, and further work may lead to even more 
accurate ML methods.

Keywords Alzheimer’s disease · Positron emission tomography (PET) · Visual interpretation · Equivocal · Machine 
Learning · Deep Learning

Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease defined by the abnormal deposits of amyloid-beta 
(Aβ) plaques and neurofibrillary tau tangles in the brain. 
Positron emission tomography (PET) imaging with 
Aβ-targeting radiotracers is a crucial tool for the in vivo 
observation and the quantitative measurements of Aβ 
burden (Jack et al., 2018; Johnson et al., 2013). These 
measurements are used in research to investigate the fun-
damental biological mechanisms involving Aβ and their 
interaction with concomitant conditions and to assess the 
disease severity, progression, and the effect of therapeutics 
over time. Aβ-positivity status based on the visual assess-
ment of Aβ-PET scans plays a central role in the confir-
mation of clinical diagnosis, and also for subject selec-
tion in research studies or clinical trials of Aβ-targeting 
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therapeutics. Following visual assessment, a single cut-
point value, separating abnormal scans from normal scans 
based on their global SUVr values, is usually determined 
using Receiver Operating Characteristics (ROC). These 
cut-points can be then used to automatically classify sub-
sequent scans to support/replace the subjective, tedious and 
resource-intensive visual assessments.

Artificial intelligence (AI) based methods have recently 
gained attention as alternative ways for scan classification. 
With these approaches, the decision is either made from 
radiotracer uptake values measured in typical AD cortical 
regions with Machine Learning (ML) models (Kim et al., 
2020) or directly from the 3D image with Deep Learning 
(DL) models (Kang et al., 2018; Son et al., 2020). However, 
little effort has been done to assess the predictive values of 
these classification methods and to determine the required 
number of training scans to build models that are general-
izable to subsequent scans. In addition, the quality of the 
fully qualified scans that are used to build/train models is of 
paramount importance but is often overlooked. In the case 
of Aβ-PET scans, despite the use of established procedures 
to ensure consistency and accuracy (Rowe & Villemagne, 
2013), classification outcomes and inter-rater agreements 
may differ with color-scales, visualization program, assess-
ment criteria, image intensity scaling method, and differences 
in image quality (Lundeen et al., 2018) possibly leading to 
inconsistency in the training data with unknown impact on 
the model performance. Finally, Aβ-targeting radiotracers 
differ by their binding affinities to Aβ plaques in the gray 
matter (GM) and by their level of nonspecific binding, mainly 
to myelin in the white matter (WM), adding another level of 
complexity and source of discrepancy in rater’s assessments 
considering that visual rating mainly relies on image contrast.

We conducted this work with the hypothesis that AI 
technology should offer more accurate surrogate models of 
visual interpretation leading to higher classification accu-
racy than ROC classification for both  [11C]PiB and fluori-
nated amyloid-PET radiotracers, specifically  [18F]AV45. 
We investigated and compared the predictive values of cut-
points derived from ROC analysis, as well as of ML and 
DL methods under various conditions: radiotracers, and 
cohorts. Furthermore, we built the training datasets using 
two well-established visual assessment methods and both 

homogeneous and heterogeneous datasets, from local cohort 
acquired at our center and multicenter data from publicly-
available database, in order to investigate their impact on the 
performance of the automated classification methods. Post 
mortem tissue samples would provide the ideal ground truth 
for Aβ-positivity classification. However, our work is con-
cerned with replicating human assessment of PET images 
for diagnosis while the patient is still alive.

Material and Methods

PET Image Data

A total of 103  [11C]PiB and 209  [18F]AV45  ([18F]Florbetapir 
/  [18F]Amyvid) processed baseline PET scans were obtained 
from the ADNI database (www. adni- info. org). The clinical 
and demographics characteristics of subjects can be found 
in Table 1. The processing steps included motion correction, 
intensity normalization using a subject-specific mask so that 
the average of voxels within the mask is exactly one, spatial 
normalization, and resampling into a common space of 160 
× 160 × 96 matrix with 1.5 mm cubic voxels. PET scans 
originated from different scanners and images were also 
subsequently filtered with a scanner-specific filter function 
to produce images with a uniform isotropic resolution of 8 
mm (full width half maximum). In addition, 176  [11C]PiB 
PET images were selected from a local cohort, which was 
recruited with the primary aim of gaining novel insights into 
the joint effects of brain Aβ burden and cerebral small vessel 
diseases on neurodegeneration and cognition, including thus 
a significant proportion of subjects with concomitant cer-
ebrovascular diseases (CeVD). These  [11C]PiB PET images 
were acquired on the Biograph mMR (Siemens Healthcare 
GmbH) at our institute, the Clinical Imaging Research Cen-
tre (CIRC), in conjunction with the Memory Aging and 
Cognition Centre (MACC) at the National University of 
Singapore. Written informed consent was obtained in the 
preferred language of the participants or accompanying 
relatives. Ethics approval was obtained from the National-
Healthcare Group Domain-Specific Review Board and the 
study was conducted following the Declaration of Helsinki.

List-mode data were acquired for 30 min, 40 min after 
the intravenous injection of 370 (±15%) MBq of  [11C]PiB 

Table 1  Clinical and 
demographic characteristics of 
subjects

Values represent the mean ± stdev (min – max)
CN Cognitive normal, MCI mild cognitive impaired, AD Alzheimer’s disease, VAD Vascular Dementia

ADNI-[18F]AV45 ADNI-[11C]PiB CIRC-[11C]PiB

Age 73 ± 7.6 (56–94) 75.7 ± 7.7 (55–90) 75.6 ± 7.24 (54–92)
Gender (M/F) 121 / 88 67 / 36 80/96
Clinical Diagnosis 37 CN, 151 MCI, 21 AD 19 CN, 65 MCI, 19 AD 29 CN, 97 MCI, 17 

VAD, 33 AD
MMSE scores 27.7 ± 2.4 (19–30) 26.5 ± 3.0 (15–30) 22.7 ± 5.5 (6–30)

http://www.adni-info.org
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(Tanaka et al., 2020). Motion correction was applied using 
an in-house developed rebinner (Reilhac et al., 2018) dur-
ing the framing of the list-mode into a single static frame 
that was then reconstructed with all corrections, including 
resolution modeling, into a 344 × 344 × 127 image matrix 
with a voxel size of 2.09 mm × 2.09 mm × 2.03 mm using 3 
iterations/21 subsets of 3D ordinary Poisson ordered-subsets 
expectation–maximization (Tanaka et al., 2020). Images 
were then registered to the same space as the ADNI datasets, 
to obtain 160 × 160 × 96 matrices with 1.5 mm cubic voxels.

Visual Assessments

Two visual assessment methods–rainbow-scale and gray-
scale, named after the color-scales employed, were used to 
classify each scan (Fig. 1). The gray-scale followed the man-
ufacturer’s recommended methods for  [18F]AV45, whereby 
images are assessed using the inverted gray color-scale with 
the image intensity adjusted to obtain the highest contrast 
between GM and WM (Eli Lilly, 2019). The rainbow-scale 
is a combination of commonly-applied methods for  [11C]
PiB, using the rainbow-scale with the image intensity 
adjusted until the cerebellar WM is largely yellow with a 
few small spots turning red (Ng et al., 2007; Tanaka et al., 
2020; Yamane et al., 2017). Aβ-positivity required a mini-
mum of one AD specific cortical region to be positive which 
translated into reddish color with the rainbow-scale or loss 
of GM-WM demarcation with the gray-scale. The cortical 
regions included the frontal lobe, parietal lobe, temporal 
lobe, anterior cingulate, posterior cingulate, and precuneus.

Scans were classified as Aβ+, Aβ- or equivocal. How-
ever, for the final binary classification, equivocal cases were 
assigned either as Aβ+ or Aβ- upon the readers’ consensus 
decision. All images were visualized in the 16-bit color-
scale on the Syngo platform (Siemens AG, Germany) in the 
transaxial orientation, but also in the sagittal and coronal 
planes when needed, and were viewed systematically from 
the bottom to the top of the brain.

The Aβ-positivity was independently assessed by an 
inexperienced student trained in the visual assessment of 
Aβ-PET scans, a junior PET image analysis researcher, a 
senior neuro-PET researcher, and an experienced medical 
doctor. Readers evaluated all the  [18F]AV45 and  [11C]PiB 
images using the rainbow-scale before the gray-scale, with 
more than 2 weeks apart to prevent readers’ memory from 
affecting the assessments. The final consensus was achieved 
subsequently by the medical doctor and senior neuro-PET 
researcher. Differences in classification between the two pro-
cedures were evaluated with Cohen’s Kappa coefficient (κ) 
(McHugh, 2012) for each radiotracer. Inter-rater agreement 
among the 3 raters (junior PET researcher, medical doctor 
and, student or senior PET researcher) was evaluated using 
Krippendorff’s alpha (α) (Krippendorff, 2011).

SUVr Computation

Each PET image was warped to the MNI-space and nor-
malized using a generic cerebellar GM reference region for 
 [11C]PiB, and a composite reference region including pons 
and cerebellar WM for  [18F]AV45 to obtain SUVr images 
using our in-house pipeline. The mean and maximum 

Fig. 1  Transaxial views of 
 [11C]PiB (left) and  [18F]AV45 
(right) scans, classified as Aβ+, 
Equivocal, and Aβ- using both 
inverse gray-scale and rainbow-
scale, displayed as scaled during 
visual assessment on the clinical 
viewer with the PET images 
shown in their native space as in 
actual clinical reading situation
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cortical SUVr values were then measured using generic 
region of interest (ROI) templates for the cortical regions 
of frontal, parietal, temporal, occipital, anterior and poste-
rior cingulate, nucleus accumbens, and thalamus (Tanaka 
et al., 2020).

Automated Binary Classification Algorithms

3 types of automated classification approaches were tested 
using the two visual assessments separately as ground truth. 
The first one relied on the determination of global cut-points 
for mean and maximum SUVr via ROC analysis above 
which scans are classified as positive. The second approach 
is based on ML algorithms with regional SUVr values used 
as features. The third approach used DL convolutional neural 
networks with 3D PET images as inputs.

Classification Using ROC Analysis and ML Algorithms

ROC analysis as well as 68 different ML models were built 
and tested for binary classification. A large number of ML 
were investigated as the ML models differ in their algo-
rithms, implementation and the list of available options. The 
algorithms were trained starting from 180, 80, and 140 data-
sets for ADNI-[18F]AV45, ADNI-[11C]PiB, and CIRC-[11C]
PiB respectively and progressively decreased in steps of 20. 
Each time, training and evaluation subjects were randomly 
selected from the cohort for building up the model and for 
the evaluation on the unseen data. Each model was fully 
built and optimized using the selected training data only. 
During this building process, optimal hyperparameters of 
the ML method (if any) were determined using the model’s 
default searching grid in a tenfold cross-validation frame-
work. In this process, the training dataset was further par-
titioned to assess, on slightly different data, each candidate 
combination of tuning parameters of the model search grid. 
Across each data set, the performance of the ML method 
was calculated on the held-out samples and the mean and 
standard deviation were summarized for each combination. 
The combination leading to the optimal results are cho-
sen for the final training using the entire training set. The 
model was then applied to 20 unseen data to determine its 
performance in terms of classification accuracy, sensitivity, 
and specificity. The whole process, from random subject 
selection to parameter optimization and performance evalu-
ation on unseen data was repeated 1000 times to derive the 
mean and standard deviation of the performance metrics. 
All computation was done under R (v. 3.6.3) using the caret 
package (v. 6.0–86, https:// topepo. github. io/ caret/ avail able- 
models. html).

Classification Using Convolutional Neural Networks 
with PET Images

Residual network (ResNet) (He et al., 2016) and Squeeze-
and-Excitation ResNet (SEResNet) (Hu et al., 2018) were 
employed as the DL networks in this study. The main fea-
ture of ResNet is the use of shortcut connections for identity 
mapping where outputs from previous layers are added to the 
outputs of the stacked layers, thus increasing the depths and 
accuracy of the network. The network won first place in clas-
sifying a large dataset of human-annotated photographs in 
the ImageNet Challenge (ILSVRC) in 2015 (He et al., 2016). 
SEResNet is built on ResNet with the addition of Squeeze-
and-Excitation (SE) blocks, which add parameters to every 
single convolutional block to enhance the adjustment of the 
weight for each channel. The input convolutional block is first 
squeezed into a channel descriptor by average pooling and 
fed into the activation functions as input-conditioned chan-
nel weights, thus introducing dynamics into the network (Hu 
et al., 2018).

ResNet and SEResNet are available on NiftyNet (Ver-
sion 0.5.0) (Gibson et al., 2018), a TensorFlow-based con-
volutional network platform. NiftyNet implements a patch-
sampling strategy to extract the necessary information for 
better convergence and higher performance generalization. 
The computation was performed on CPU (Dell OptiPlex 
9020) and the training progress was tracked using Tensor-
Board (Version 1.12.2). The networks were kept unchanged 
for ease of comparison with other works but were each 
optimized with about 50 different hyperparameter con-
figurations (https:// nifty net. readt hedocs. io/ en/ dev/ config_ 
spec. html), within the computational feasibility of the CPU 
and using only CIRC-[11C]PiB images. Each time, cross-
entropy was employed as the loss function. The final num-
ber of iterations of 1000 was subsequently determined from 
Tensorboard where the loss function curve flattened. Both 
optimized ResNet and SEResNet employed Adam optimizer 
with a batch size of 8 and a learning rate of 0.003. However, 
a spatial window size of (32,32,32) with Parametric Recti-
fied Linear Unit (PReLU) activation function was applied 
for ResNet while a spatial window size of (24,24,96) with 
Leaky Relu activation function was applied for SEResNet. 
A whole head mask was generated by thresholding the PET 
image intensity and was applied as weighting during net-
work training.

DL networks were trained and tested using  [18F]AV45 
only and the  [11C]PiB images from both ADNI and CIRC 
databases pooled together and using either rainbow- or 
gray-scale binary visual assessment results. The effect of 
the number of training data on the classification accuracy 
was further investigated using the better DL network with 
the minimal variation in the number of training data of 

https://topepo.github.io/caret/available-models.html
https://topepo.github.io/caret/available-models.html
https://niftynet.readthedocs.io/en/dev/config_spec.html
https://niftynet.readthedocs.io/en/dev/config_spec.html
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140 and 180, due to the extensive time required to train the 
networks. The network was trained individually for each 
visual assessment method 10 times with random selection 
of the training data and evaluated on the remaining unseen 
data.

Evaluation of the Performance of Classification 
Algorithms

The performance of the models for scan classification 
was evaluated with accuracy (ACC), sensitivity or true 
positive rate (TPR), and specificity or true negative rate 
(TNR). Evaluation was carried out independently for 
each cohort (ADNI-[18F]AV45, ADNI-[11C]PiB, and 
CIRC-[11C]PiB) and each visual assessment method 
(rainbow-scale and gray-scale). Statistical analysis was 
performed using unpaired 2-tailed t-test using GraphPad 
(GraphPad Software, CA, US), with significance defined 
at 0.05, across the different approaches and 2 classifica-
tion methods (rainbow and gray) for each cohort where 
possible.

Results

Comparison of Visual Assessment Methods

The confusion matrices resulting from the binary and ter-
nary classifications obtained with the 2 visual assessment 

methods and for the 3 cohorts are shown in Table 2. We 
observed that most discrepancies consisted of subjects who 
were classified negative with the rainbow-scale but turned 
positive with the gray-scale. This migration concerned 7.7% 
(16 out of 209), 3.9% (4 out of 103), and 6.8% (12 out of 
176) of the cases for ADNI-[18F]AV45, ADNI-[11C]PiB, and 
CIRC-[11C]PiB respectively. Significant differences were 
observed for binary classifications of ADNI-[18F]AV45 and 
CIRC-[11C]PiB only using Wilcoxon Signed-Rank Test, with 
significance defined at p < 0.05.

Generally, high agreement of κ > 0.8 was found between 
the two assessment methods for both Aβ-PET tracers with 
binary and ternary classification (Table  3 top). Higher 
agreement was observed for ADNI-[11C]PiB than for the 
two other cohorts. The inter-rater results showed that the 
rainbow-scale yielded higher agreement than the gray-scale 
(Table 3 bottom). The ternary rating was particularly dis-
cordant for CIRC-[11C]PiB using the gray-scale, possibly 
due to the presence of more ambiguous cases caused by 
concomitant CeVD. Excellent agreements were obtained 
using rainbow-scale for binary and ternary classifications 
with ADNI-[11C]PiB data, where about 67% were classified 
as Aβ+ (Table 2).

Performance Evaluation of Cut‑points from ROC 
Analysis and ML Algorithms with Number 
of Training Data

Figure 2 shows the classification accuracy of the 3 cohorts 
as a function of the number of training data, obtained with 

Table 2  Percentage (%) distributions in classification using rainbow-scale and gray-scale for ADNI-[18F]AV45 (top), ADNI-[11C]PiB (middle) 
and CIRC-[11C]PiB (bottom) with binary (left) and ternary classifications (right)

ADNI-[18F]AV45 Rainbow

Aβ- Aβ+

Gray 
Aβ- 60.8 0.0

Aβ+ 7.7 31.6

ADNI-[18F]AV45 Rainbow

Aβ- Aβ+ Equivocal- Equivocal+

Gray 

Aβ- 58.9 0.0 0.0 0.0

Aβ+ 0.0 27.8 4.3 3.3

Equivocal- 0.5 0.0 1.4 0.0

Equivocal+ 1.9 0.0 1.4 0.5

ADNI-[11C]PiB Rainbow

Aβ- Aβ+

Gray
Aβ- 28.2 0.0

Aβ+ 3.9 68.0

ADNI-[11C]PiB Rainbow

Aβ- Aβ+ Equivocal- Equivocal+

Gray 

Aβ- 28.2 0.0 0.0 0.0

Aβ+ 2.9 67.0 1.0 0.0

Equivocal- 0.0 0.0 0.0 0.0

Equivocal+ 0.0 0.0 0.0 1.0

CIRC-[11C]PiB Rainbow

Aβ- Aβ+

Gray
Aβ- 57.4 0.0

Aβ+ 6.8 35.8

CIRC-[11C]PiB Rainbow

Aβ- Aβ+ Equivocal- Equivocal+

Gray 

Aβ- 52.8 0.0 0.0 0.0

Aβ+ 2.3 31.3 2.8 3.4

Equivocal- 4.0 0.0 0.6 0.0

Equivocal+ 0.6 0.0 1.1 1.1

Equivocal cases in ternary classifications were further separated into -/+ depending on their final binary classification
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cut-points for mean and maximum SUVr determined from 
ROC analysis, as well as with 4 ML algorithms selected 
based on their performance. Note that, classification 
based on mean SUVr cut-points never performed the best. 

Classification based on maximum SUVr cut-points in place 
of mean SUVr lead to increased accuracy for the ADNI-
[18F]AV45 cohort with both visual assessment methods 
and for the CIRC-[11C]PiB cohort with gray-scale only. 

Table 3  Agreement in consensus classification between rainbow- and gray-scales with Cohen’s Kappa (κ) [confidence interval] and inter-reader 
agreement among 3 readers with Krippendorff’s alpha (α), with 2 and 3 classes classification for  [11C]PiB and  [18F]AV45

Only consensus data (n = 179) is available for CIRC-[11C]PiB using the rainbow-scale
a Rated by the senior PET researcher instead of the student
b CIRC-[11C]PiB data was rated by the senior PET researcher while ADNI-[11C]PiB was rated by the student
c Student rated only 111 out of 209 scans

Metrics Assessment Methods No of 
Classes

[11C]PiB [18F]AV45

ADNI CIRC All ADNI

Agreement between
Gray & Rainbow
(κ)

2 0.908
[0.820, 0.996]

0.858
[0.781, 0.935]

0.886
[0.832, 0.940]

0.834
[0.757, 0.911]

3 0.911
[0.827, 0.996]

0.764
[0.681, 0.847]

0.825
[0.766, 0.885]

0.812
[0.7427, 0.882]

Inter-rater
agreement
(α)

Rainbow 2 1.000 - - 0.899c

3 0.960 - - 0.730c

Gray 2 0.867 0.817a 0.845b 0.798
3 0.501 0.376a 0.422b 0.624

Fig. 2  Classification accuracy of unseen data averaged over the 
1000 realizations as a function of the number of training data of (a) 
ADNI-[18F]AV45, (b) ADNI-[11C]PiB, and (c) CIRC-[11C]PiB, with 
(top) rainbow-scale and (bottom) gray-scale visual assessment, and 
obtained with cut-points of mean SUVr (blue), max SUVr (orange) 

determined from ROC analysis, and 4 selected ML algorithms: Naïve 
Bayes (nb, green), Support Vector Machine Radial Weights (SVMRa-
dial, red), Stabilized Linear Discriminant Analysis (slda, purple) and 
Radial Basis Function Network (rbfDDA, brown)
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Supplementary Figures 1 and 2 show that these increases 
resulted from both higher sensitivity and specificity. How-
ever, its performance was below that of mean SUVr in the 
classification of CIRC-[11C]PiB using rainbow-scale, and 
ADNI-[11C]PiB using both rainbow- and gray-scales due to 
reduced specificity. Among the 68 ML algorithms, Naïve 
Bayes (nb) performed the best overall, specifically with 
gray-scale assessment. Support Vector Machine Radial 
Weights (SVMRadial) showed similar performance to that 
of nb, except for ADNI-[18F]AV45 using gray-scale. Sta-
bilized Linear Discriminant Analysis (slda) performs the 
best out of the 68 ML algorithms for ADNI-[18F]AV45 
using rainbow-scale, but performed the worst for the rest. 
Radial Basis Function Network (rbfDDA) performed best 
for CIRC-[11C]PiB with rainbow-scale, but yielded moderate 
performance for the others. A summary of the performance 
obtained with the 68 ML algorithms is given in Supplemen-
tary Fig. 3 showing that Naïve Bayes classifier was overall 
the best performing algorithm.

Figure 3 shows the average differences between classi-
fication accuracies obtained with training and unseen data 
as a function of the number of training data for the three 
cohorts based on the cut-points of mean SUVr (Fig. 3a), and 
maximum SUVr (Fig. 3b) determined from ROC analysis, 
and with Naïve Bayes (Fig. 3c). Overall, it shows that Naïve 
Bayes required less training data to build a classification 
model that is generalizable to other scans. These results also 
indicated that the classification performance of cut-points 
approaches was usually overestimated when reported using 
training data only. The differences in mean accuracy and 

the corresponding statistical differences for the three differ-
ent methods and two different visual assessment methods 
employed are shown in Supplementary Tables 1–4. Gener-
ally, significant differences were observed across the 3 meth-
ods for ADNI-[18F]AV45, regardless of the visual assess-
ment method employed, as well as for both  [11C]PiB datasets, 
trained using the gray-scale visual assessment results.

Performance Evaluation of Deep Learning Approach 
with Number of Training Data

Although ResNet and SEResNet were evaluated, their per-
formances were quite similar with ResNet performing more 
consistently and better for all cases. As such, only ResNet was 
selected for further evaluation with 140 and 180 training data. 
Table 4 shows the classification performance obtained with 
ResNet on unseen data when trained with 140 and 180 scans. 
ADNI-[11C]PiB and CIRC-[11C]PiB were pooled together 
leading to 2 cohorts. Surprisingly, higher agreement between 
automatic classification and visual classification was obtained 
with networks trained using rainbow-scale visual assessment 
for  [18F]AV45 and using gray-scale for  [11C]PiB. Higher 
agreement was also obtained for  [11C]PiB, even though the 
network was trained using two different  [11C]PiB datasets. 
The average classification accuracy generally improved with 
increasing number of training data except for  [18F]AV45 
with rainbow-scale. However, the variations in classification 
accuracy and specificity were generally smaller with rainbow-
scale than gray-scale. No statistical difference was observed 
in the accuracy of ResNet in classification when trained using 

Fig. 3  Average differences in 
accuracy between training and 
unseen data with the number 
of training data for 3 classifi-
cation methods based on (a) 
mean SUVr, and (b) max SUVr 
cut-points determined from 
ROC analysis, and (c) machine 
learning algorithm of Naïve 
Bayes (nb) for the 3 datasets of 
ADNI-[11C]PiB (blue), CIRC-
[11C]PiB (gray) and ADNI-[18F]
AV45 (orange) with rain-
bow- (full line) and gray-scale 
(dashed line) visual assessment 
classification
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rainbow and gray-scale visual assessment methods (Supple-
mentary Table 4). The distributions of mean and max SUVr 
values of subjects classified as Aβ-/+ using ResNet compared 
to visual assessment classifications using both rainbow- and 
gray-scales are shown in Supplementary Fig. 4.

Discussion

In this study, we investigated the performance of three 
approaches for the classification of Aβ-PET images: (1) 
global cut-points derived from ROC analysis, (2) ML algo-
rithms using regional SUVr measurements, and (3) a DL 
network with 3D Aβ-PET images, under various conditions 
with the ultimate goal to identify a suitable approach to 
replace the tedious and consuming visual assessment.

Evaluation of Visual Assessment Methods

Our results contradicted our expectation whereby the recom-
mended method for each radiotracer would be more suitable 
to interpret the respective scans, with higher inter-reader 
agreement (Table 3). The results showed that the rainbow-
scale seems to be a more reliable assessment procedure 
for both radiotracers, supported by the higher agreement 
between raters with different backgrounds and years of expe-
rience and for all cohorts (Table 3), and higher consistency 
between the classification of the scans (AB-, equivocal-, 
equivocal+, A+) and their SUVr values (Supplementary 
Fig. 5). The use of a reference region to scale the image 
intensity likely made the assessment more reproducible than 
the more subjective intensity scaling performed by adjusting 
the contrast between WM and GM.

More scans were assessed positive using the gray-scale 
procedure (Table 2) leading to lower cut-points, but more 
importantly, this visual assessment procedure yielded higher 
variability in the mean and maximum SUVr values of the 
positive group showing important overlaps with the nega-
tive group (Supplementary Fig. 5). Many scans that turned 
positive with the gray-scale assessment exhibited a single 
focal uptake which did not reach the required intensity with 

the rainbow-scale but yielded a loss of contrast between 
GM-WM with the gray-scale method (Supplementary 
Fig. 6b). However, the gray-scale allows for quick assess-
ment as there is no need to locate the reference region before 
adjusting the image intensity. Depending on the reader’s 
experience, the amount of time saved can be as much as 4 
times using the gray-scale over the rainbow-scale.

Comparison of Automated Classification 
Approaches

Generally, the higher the consistency of the ground truth clas-
sification (higher agreement between SUVr and visual clas-
sification), the higher the performance of the automated clas-
sification methods. Their performance differs based on their 
capacity to deal with focal uptake. Our results first showed that 
the classical cut-points based approach with mean SUVr was 
systematically outperformed by the other tested techniques. 
Classification with maximum SUVr cut-points yielded higher 
accuracy for ADNI-[18F]AV45 and CIRC-[11C]PiB cohorts 
due to a higher sensitivity and specificity (Supplementary 
Figs. 1 and 2). It is intuitively closer to the visual assessment 
process in particular for the detection of focal uptake which is 
more common in the ADNI-[18F]AV45 and CIRC-[11C]PiB 
cohorts. For example, one subject scanned with  [11C]PiB was 
classified as Aβ- using rainbow-scale but was Aβ+ using gray-
scale due to focal regional uptake (Supplementary Fig. 6b). In 
this case, the maximum SUVr value within the focal region 
was 2.16, but the global mean SUVr was only about 1.10 due 
to lack of specific uptake in the remaining cortical GM.

Among the 68 tested ML algorithms, Naïve Bayes per-
formed the best overall, specifically with gray-scale classifi-
cation. Comparing classification based on global cut-points 
from ROC analysis and ML algorithms using regional val-
ues, ML-based classification achieved better convergence 
between training and unseen data, and with a smaller num-
ber of training data (Fig. 3). Previous attempts to classify 
Aβ-PET images automatically using ML algorithms namely 
SVM with linear kernel or histogram of oriented 3D gradi-
ents, achieved high accuracy of > 96%, but with the exclu-
sion of equivocal cases (Cattell et al., 2015; Vandenberghe 

Table 4  Averaged Accuracy (ACC), Sensitivity (TPR), and Specific-
ity (TNR) (mean ± stdev) in classifying the unseen data of  [18F]AV45 
and  [11C]PiB from both ADNI and CIRC datasets when trained with 

140 and 180 training data using rainbow-scale and gray-scale visual 
assessment classifications

Datasets No of
Training Data

Rainbow-scale Gray-Scale

ACC TPR TNR ACC TPR TNR

[18F]AV45 140 0.901 ± 0.054 0.841 ± 0.147 0.940 ± 0.055 0.803 ± 0.103 0.677 ± 0.359 0.887 ± 0.137
180 0.869 ± 0.072 0.776 ± 0.231 0.909 ± 0.126 0.831 ± 0.195 0.859 ± 0.205 0.832 ± 0.311

[11C]PiB 140 0.889 ± 0.120 0.831 ± 0.247 0.953 ± 0.057 0.904 ± 0.040 0.859 ± 0.087 0.958 ± 0.038
180 0.922 ± 0.034 0.893 ± 0.096 0.947 ± 0.043 0.953 ± 0.052 0.893 ± 0.101 0.912 ± 0.117
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et al., 2013). This situation is close to our ADNI-[11C]PiB 
cohort, with few equivocal cases, and for which accuracy 
above 98% was obtained with some ML methods. However, 
only a small number of ML algorithms performed better than 
traditional cut-points (Supplementary Fig. 3), with Naïve 
Bayes performing the best overall. Although ML algorithm 
can be a better quantitative approach to support Aβ-PET 
image classification than traditional SUVr cut-points, care-
ful selection and validation of ML algorithm are required 
before clinical use.

The deep learning VGG16 model implemented by Kang 
et al. yielded higher accuracy of > 92% using image slices 
compared to 3D volumes of  [18F]Florbetaben images, with 
accuracy of > 89%, with either whole brain or GM masks 
input (Kang et al., 2018). Son et al. (2020) also used 2D 
and 3D deep learning models to classify  [18F]Florbetaben 
images and obtained 100% accuracy for definite Aβ-/+ cases 
but with 31.5% discordance in equivocal cases. We obtained 
comparable high accuracy of about 90% and 95% for unseen 
data of  [18F]AV45 and  [11C]PiB datasets (Table 4). Higher 
variation in accuracy was obtained with gray-scale, particu-
larly for  [18F]AV45, indicating that the DL network could 
not map the links between the visual assessment classifica-
tion and the  [18F]AV45 images with 16 subjects that were 
classified differently. However, the networks were still able 
to classify the  [11C]PiB images despite the same number 
of subjects being classified differently (Table 2). The best-
trained network, using rainbow-scale visual assessment 
results, classified most subjects correctly except for a few 
cases near the cut-points for both  [11C]PiB and  [18F]AV45 
(Supplementary Fig. 4).

Methodological Considerations and Study 
Limitations

Small sample size, particularly for ADNI-[11C]PiB, was 
used. Moreover, the ADNI-[11C]PiB dataset consisted 
of mostly Aβ+ scans, while CIRC-[11C]PiB consisted 
of more Aβ- and equivocal cases (Table 1). This helps 
to balance out the dataset. Whole head mask was used 
in our study unlike other studies, which used either the 
whole brain mask or gray matter mask, derived from MR 
images. We chose to use whole head mask as we want 
to investigate the feasibility to classify the images auto-
matically assuming the subjects only acquired PET scans. 
This might be the reason for the poorer binary classifica-
tion results obtained with DL approach compared to that 
obtained by Son et al. (2020). The optimized DL network 
was trained with  [11C]PiB PET images from both ADNI 
and CIRC datasets rather than trained for individual data-
sets. This may show that DL networks require more images 
or a more balanced dataset in order to classify the images 
with higher accuracy, which may be more important than 

the image quality. DL networks were only trained 10 times 
compared to ROC and ML approaches due to the much 
longer times required. As such, evaluation was carried out 
on all remaining unseen data instead of 20 unseen data at 
each iteration.

In this work, hyperparameters of each ML method were 
determined automatically in a cross-validation framework 
to address the time consuming manual optimization task. 
As a matter of fact, manually optimizing the parameters of 
each ML model and for each combination of training and 
evaluation datasets would have been practically impossi-
ble. However, we occasionally manually optimized some 
parameters and compared with the automatically selected 
parameters, a verification exercise which in the vast major-
ity of the cases confirmed the reliability of the automated 
procedure. Different reference regions were selected for 
SUVr computations of  [11C]PiB and  [18F]AV45 and this 
may impact ML classification accuracy. However, assess-
ing this impact is beyond the scope of this study. We do 
not have the absolute ground truth based on pathology, thus 
clinical visual assessment was used as ground truth, simi-
lar to that used by Son et al. (2020). We used two visual 
assessment methods to generate the ground truths to deter-
mine the impact on three automated classification meth-
ods. Our work showed that the classification results and 
reader agreement varied depending on the visual assess-
ment methods used. The inclusion of more accurate quan-
tification, such as binding potentials via kinetic modelling, 
would help in checking the visual assessment classification. 
However, only static PET images were available, hence we 
were unable to include in this study. Absolute ground truth 
might be obtained using synthetic images, such as obtained 
via Monte Carlo simulation, but this comes with other chal-
lenges that are beyond the scope of this work.

Conclusions

Higher accuracy was generally obtained for all three 
approaches when trained with rainbow-scale classifica-
tion. Automated algorithms cannot replace visual assess-
ment completely as they could not detect focal uptake with 
100% accuracy. However, they yielded more consistent 
results than across raters and thus can be used to support 
readers in classifying the images. Only a small number 
of ML algorithms performed better than traditional cut-
points, with Naïve Bayes performing the best overall. 
However, ML-based classification provided the highest 
reliability even with a small number of training data, with 
similar accuracy to ROC classification. This shows the 
promising use of ML algorithms in supporting Aβ-PET 
image classification than traditional SUVr cut-points, but 
careful selection and validation of ML algorithms are 
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required. Although image-based classification using ML 
and DL approaches can be achieved without tracer-specific 
target regions and cut-points, our results showed that DL 
networks can support the classification of definite cases 
accurately, but adds very little value as they are also obvi-
ous for readers to classify visually. However, they may 
add as an additional check for equivocal cases, on top of 
semi-quantitative metrics.
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